
 

Abstract—This paper presents a systematic design procedure 
of fuzzy controllers for exponentially stabilizing affine 
nonlinear systems, which are subject to vanishing 
perturbations. The modeling error, as a key factor in the 
validity of the stability analysis is also taken into consideration. 
A unified framework is presented, dealing with the modeling 
error as the system perturbation. It is shown that the 
constraints imposed on the modeling error are always satisfied 
for affine nonlinear systems, when they are modeled by Takagi-
Sugeno fuzzy model through currently available methods. The 
constraints required to guarantee the exponential stability of 
the original nonlinear system and design the controller are 
transformed into LMIs. Finally, the way to utilize the presented 
method for a stabilizing problem is demonstrated using two 
examples.           

I. INTRODUCTION

ONTROL of nonlinear dynamical systems, because of 
their structural complicacy and behavioral variety, is 

still a very challenging area in the control systems 
engineering. Designing a controller to stabilize and improve 
the performance of these systems, usually involves a 
relatively strong mathematical and engineering background. 
So, the theories and methods developed to analyze and 
design nonlinear control systems are hardly acceptable in 
industry. 
    According to the problems mentioned above, developing 
a systematic design method which is easily understandable 
and applicable to a large family of nonlinear systems, is an 
important research issue in modern control engineering. 
Recently, the fuzzy-model-based approaches to design 
controller for nonlinear systems has taken a large step 
toward achieving this objective. In most of these 
approaches, the original nonlinear system is first replaced by 
its Takagi-Sugeno (TS) fuzzy approximation, which is a 
weighted sum of linear subsystems. The controller structure 
is then chosen accordingly as a weighted sum of state 
feedback controllers, with the same weights as the TS model 
weights. This structure for controller is known as parallel 
distributed compensator (PDC). The control design 
objective is then, determining feedback gains of the PDC 
such that the origin of the fuzzy closed loop system, i.e. the 
system consisted of the TS model and PDC, is stable or 
some performance criteria are satisfied. Applying quadratic 
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Lyapunov function to analyze the stability of this closed 
loop system provides the ability to present the stability 
conditions in the form of LMIs. Since very efficient 
numerical methods are currently available for solving LMIs 
([1]), the controller gains can be obtained automatically via 
solving these LMIs. Consequently, the controller design 
procedure of the original nonlinear system is done semi-
automatically. 
      The idea described above, is the basis of many fuzzy-
model-based methods developed so far to stabilize nonlinear 
systems, e.g. in [2]-[5]. However, a very important point has 
been disregarded in the abovementioned procedure. The 
modeling error, which is the error between the original 
nonlinear system and its TS fuzzy approximation, has not 
been considered in the stability analysis. In the presence of a 
non-zero error, the stability analysis of the closed loop fuzzy 
system has no theoretical worth in guaranteeing the stability 
of the original closed loop system, i.e. the system consisted 
of the PDC and the original nonlinear system. In spite of the 
undeniable importance of this subject, only a few researches 
have ever consciously considered the modeling error in the 
stability analysis, as it is noticed in [6] and also recalled in 
[7] that “there are few results on whether it is possible that 
the fuzzy controller, which is designed to stabilize the TS 
fuzzy model, can also stabilize the original nonlinear system, 
and furthermore if it is possible, how to design the fuzzy 
controller to achieve such stabilization of the original 
nonlinear system.” Introducing such a point of view has 
motivated some researches and led to some valuable results. 
In [7], a preliminary answer to this question has been 
presented that considers both the possibility and the way of 
realization of this approach. Investigating the possibility, [7] 
states that “the class of nonlinear systems whose 
stabilization can be solved by available fuzzy control 
approach based on TS models is affine nonlinear systems”
and as the way of realization of this approach it states that 
“the stabilization problem of an affine nonlinear system can 
be solved as a robust stabilization problem of its TS fuzzy 
approximator with the approximation error as the 
uncertainty bounds.”

This paper investigates the problem of exponentially 
stabilizing perturbed affine nonlinear systems. The 
perturbation is supposed to be vanishing at the origin, and 
can be caused by some uncertainties, aging, or modeling 
error. These are some unavoidable facts in realistic problems 
which can highly affect the stability and performance of the 
system, and a reliable design method must be robust against 
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these perturbations. 
As implicitly noted above, one of the sources of the 

system perturbation can also be the modeling error. So, 
using the conventional framework for analyzing the stability 
of perturbed nonlinear systems, as introduced in [8], we 
present the modeling error as a vanishing perturbation, 
satisfying some norm boundedness conditions. Based on the 
results in [3] and [7], we discuss that this presentation is 
always possible and the conditions are always satisfied for 
affine nonlinear systems. Such a presentation provides a 
uniform framework which deals equivalently with modeling 
error and the perturbations of the original nonlinear system. 

Based on the described presentation of and assumptions 
on the modeling error and system perturbations, the required 
constraints, guaranteeing the exponential stability of the 
original closed loop system are derived in the form of LMIs. 
Finally, the way of utilizing the presented method, is 
illustrated via two examples.   

II. PROBLEM DEFINITION AND ERROR PRESENTATION

A. Problem Definition 
Consider the following perturbed affine nonlinear system: 

( ) ( )uxxgxxfuxgxfx gf )()(ˆ)()(ˆ)()( 11 δδ +++=+= (1)
Where 0)0( =f , nRx ∈  is the state vector, mRu ∈  is the 
input vector, and )(1 xfδ  and )(1 xgδ  are perturbations. The 

perturbation term is supposed to be vanishing at the origin, 
i.e. 0)0(1 =fδ . The nominal system is obtained by ignoring 

the perturbation terms in (1) and can be modeled by the 
standard TS fuzzy approximation as: 
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where )(2 xfδ  and )(2 xgδ  present the modeling error, and 

0)0(2 =fδ . r is the number of linear subsystems and )(xhi

is the corresponding weight of the ith subsystem, satisfying: 
rixhxh i

i
i ,,2,1,0)(,1)( =≥=

With this unified type of presenting the modeling error and 
system perturbations, we can combine (1) and (2) and 
describe the original perturbed system as: 

uxxuBxAxhuxgxfx gf
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i
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where )()()( 21 xxx fff δδδ += , )()()( 21 xxx ggg δδδ += .

We assume that the perturbation term )(xfδ satisfies the 

conventional linear growth bound ([8]) with 2-norm, and 
)(xgδ  has bounded 2-norm, as following: 

ggff xxx βδγδ ≤≤
222

)(,)( (4)

Let the controller be the commonly used PDC structure as 

=
−=

r

i
ii xFxhu

1
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where Fi is the feedback gain corresponding to the ith

subsystem.  If we apply this controller to (3), we obtain the 
following closed loop system: 
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Where, 

jgjiiij FxFBAxG )()( δ−−= (7)

and
i

means 
=

r

i 1
in allover the paper. 

B. Discussion of Possibility 
In the previous subsection we presented the modeling 

error as system perturbations, and assumed some special 
norm boundedness properties (4) on these perturbation 
terms. But, a question might be asked here that, whether it is 
possible to do such presentation satisfying (4) or not. In this 
subsection, we try to find an answer for this question. 

It is shown in [7] that affine nonlinear systems can always 
be approximated by standard TS fuzzy model plus the 
modeling error terms as: 
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which  satisfy the following bounds with any 0>ε :
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Now we show that the error terms (8) satisfying (9), will 
also satisfy the constraints (4). First consider the term )(xfδ
in (8). According to some matrix norm inequalities found in 
[9], [10] or some other text books on linear algebra, we can 
easily write: 
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So, it can be seen that the first inequality in (4) is satisfied 
with εγ nf = . Similarly, for )(xgδ  we can write: 
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Consequently, the second inequality in (4) is also satisfied 
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with εβ ng = .

   As another method of modeling, we consider the 
method using the sector nonlinearity approach described in 
[2]. It seems that this method of modeling was not 
investigated in [7], since this method can locally (or 
globally) represent rather than approximate the original 
nonlinear system. In other words, modeling via this method 
is exact, i.e. the modeling error equals to zero. So, In this 
case, it is clear that the stability analysis of the fuzzy closed 
loop system is also valid locally (or globally) for the original 
closed loop system. However, in order to decrease the 
computational effort required to solve the LMIs, a rule 
reduction procedure is proposed in [3]. This rule reduction 
procedure produces a modeling error, which is then 
converted to norm-bounded model uncertainties. Here we 
show that the bounded modeling error obtained in [3] can 
also be presented as in (2) and always satisfies the 
constraints (4). 

Referring to [3], it can be easily seen that the modeling 
error terms are presented as: 

Δ=

Δ=

i
bibibiig
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δ

δ

(10)
where aibiai EDD ,, , and biE are known matrices, and 

)(taiΔ  and )(tbiΔ satisfy the upper bounds: 

ritt
bi

bi
ai

ai ,,1,1)(,1)( 22 =<Δ<Δ
ρρ (11)

For the perturbation term )(xfδ  we can write: 

22222
)()()( xEtDxhx aiaiai

i
if Δ≤δ

The worst case is obtained when all r fuzzy rules are 
reduced to just one rule. In this case, by considering the 
definitions (12) found in [3], 2aiD , 2)(taiΔ , and 2aiE

take their maximum values as nDa =21 ,

121 1)( aa t ρ≤Δ , and nEa =21 .
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Based on these worst case bounds, we can write: 
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Which shows that the first inequality in (4) is satisfied with 
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γ = . Similarly, using the definitions in (12), we can 

write the following inequalities for )(xgδ :
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Consequently, the second inequality in (4) is also satisfied 

with
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mn

ρ
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 Now, we can conclude that the presentation of modeling 
error as in (2) while satisfying the constraints (4), is always 
possible for affine nonlinear systems which are modeled by 
at least two currently available methods.  

III. STABILITY ANALYSIS AND CONTROLLER DESIGN

In this section, using a common quadratic Lyapunov 
function, we analyze the exponential stability of the closed 
loop system (6), and transform the required constraints for 
stability into LMIs. 

Before starting the stability analysis, and to make ease of 
reference, we first recall a theorem from [8].  

Consider the nonlinear system ),( xtfx = , where 
nRDf →×∞),0[: is piecewise continuous in t and locally 

Lipschitz in x on D×∞),0[ , and nRD ⊂  is a domain that 
contains the origin 0=x . Let 0=x  be an equilibrium point 
for this system, and RDV →×∞),0[:  be a continuously 
differentiable function such that 

aa xcxtVxc 21 ),( ≤≤ (13)

axcxtf
x
V

t
V

3),( −≤
∂
∂+

∂
∂

(14)

for 0≥∀t  and Dx ∈∀ , where c1, c2, c3, and a are positive 
constants. Then the theorem in [8] states that 0=x  is 
exponentially stable, and if the assumptions hold globally, 
then 0=x  is globally exponentially stable. 
 Also, we recall the following inequality from [2] 

0)()(2
1

1)(2 ≥
−

−
<i i ji

jii xhxh
s

xh (15)

when the number of rules that fire for all t is less than or 
equal to s, where rs ≤<1 .
 According to the theorem and the inequality introduced 
above, and the problem defined in the previous section, the 
following theorem gives the design constraints to guarantee 
the exponential stability of the original closed loop system. 

Theorem: The matrix gains of the PDC (5), which 
exponentially stabilizes the origin 0=x  of the perturbed 
nonlinear system (1), being presented as (3), and satisfying 
(4), are obtained by solving the LMIs (16)-(18). In these 
LMIs, the matrices X, Y0, and Mis and the scalars 1σ  and 

2σ  are variables to be determined, and XFM ii = . 1=fκ

( 1=gκ ) when 0)( ≠xfδ  ( 0)( ≠xgδ ), and 0=fκ

( 1=gκ ) otherwise. When 0)( =xfδ  ( 0)( =xgδ ), the 
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corresponding rows and columns in (17) and (18), signified 
by dashed (dotted) lines, are omitted. 
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Furthermore, if the modeling (3) is valid globally, and the 
assumptions (4) hold globally too, then the origin 0=x  is 
globally exponentially stable. 

Proof: Consider the candidate for Lyapunov function as 
PxxxV T=)(  where 0>= TPP . This function obviously 

satisfies (13) with 2-norm and )(min1 Pc λ= , )(max2 Pc λ= ,
and 2=a . So, in order to satisfy (14), we must have 

0,)( 33
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If we compute the derivative of the Lyapunov function 
along the trajectories of the closed loop system (6), we have 
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For the second term in (19) and employing (4), we can write 
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 Substituting this inequality into (19), we have 
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Now consider a positive semi-definite matrix Q such that 
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Substituting this inequality in (20), we have 
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Now, in order to satisfy (14), it is sufficient to have: 
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In (21), we considered Q to be a positive semi-definite 
matrix. If we make this condition a bit stricter and consider 
Q to be a positive definite matrix ( 0>Q ), then by choosing 

sQsc /)()1(0 min3 λ−≤< , we can absorb the term sc3I in 
(22) into Q and rewrite the constraints (21) and (22) as: 
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The LMIs (17) and (18) are obtained from these two 
constraints. First consider the constraint (24). Substituting 
(7) in (24) and multiplying it on the left and write by 

1−= PX , we have 
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where 00 >= XQXY  and XFM ii = . For the second term 
in (25) and using (4), with any positive constants 2σ  we 
have: 
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Substituting this inequality in (25), leads to the final 
constraint 
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Applying the schur complement ([1]) to (26), transforms it 
into the LMI (17). The LMI (18) is obtained quite similarly 
from (23). Also, It can be easily seen through the proving 
procedure that 0=fκ  and the corresponding row and 

column in (17) and (18) are dropped, when 0)( =xfδ .

When 0)( =xgδ , the same holds for gκ  and the 

corresponding rows and columns in (17) and (18). 
Furthermore, since the analysis is valid globally, it is 
obvious that if the modeling (3) is valid globally, and the 
assumptions (4) hold globally too, then the origin is globally 
exponentially stable. 
 It can be seen that the constraints (16)-(18), which we 
found here for exponential stability, are not significantly 
more restrictive than similar results in the literature for 
asymptotic stability, cf. the results in [2].    

IV. EXAMPLES

A. Stabilizing a Pendulum with Parametric Uncertainties
Consider the simple pendulum shown in Fig. 1. The 

dynamic equation of this pendulum, taken from [8], can be 
written as 

l
Tklmgml =++ θθθ sin (27)

where l is the length of the rod, m is the mass of the bob, k is 
the coefficient of friction, )/(81.9 2smg =  is the 
acceleration due to gravity, and T is the input torque applied 
to the pendulum. Suppose that, because of some practical 
reasons, there are some uncertainties in the physical 
quantities of the system, as they take the values: 

)(03.197.0 ml ≤≤ , )(1.19.0 kgm ≤≤ , and 15.005.0 ≤≤ k .

Considering the state variables as ϕθ −=1x  and θ=2x ,

we can write the state equations as 
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represent this system as 
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Substituting the physical values, we have: 1.0ˆ,82.9ˆ == ba ,
and 02.1ˆ =c . Employing the sector nonlinearity approach 
found in [2] or [3], the nominal system can be globally and 
exactly represented, using only two fuzzy rules as following: 

=
+=+=
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For πϕ = , which corresponds to the unstable upright 
equilibrium position, we have 
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Since the modeling is exact, the perturbation terms 
originates only from the system uncertainties, and can be 
easily shown that they globally satisfy (4) with 3.0=fγ ,

and 16.0=gβ . Solving the LMIs (16)-(18) for this system, 

we obtain the PDC feedback gains as ]9.39,7.131[1 =F
and ]9.61,3.199[2 =F .

Although the modeling is valid globally and the 
constraints (4) are also satisfied globally, we can not say that 
the controller globally stabilizes the unstable equilibrium 
point, because the system does not have a unique 
equilibrium point. However from the physical point of view, 
the pendulum is stabilized at its upright position, starting 
from any initial positions and velocities, except from 

θ
l

Fig. 1.  A simple Pendulum. 
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.0)0(,0)0( == θθ  Simulation results considering 1.1=m ,
03.1=l , and 05.0=k , are shown in Fig. 2 for zero initial 

angular velocity and different initial angles. 

B. Stability in the Presence of Modeling Error 
Consider the following system taken from [3]: 

++=
−=

=

uxxxx
xxxx
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21

ε (30)
By assuming 55 1 <<− x , 2/2/ 2 ππ <<− x , ππ <<− 3x ,
and 5.0=ε , this system can be locally, but exactly 
represented using eight fuzzy rules, as done in [3]. However, 
to reduce the number of fuzzy rules, we can write (30) as 
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)(ˆ,5.0)(ˆ

21

331

31

2

xxx

x
xg

xx
xx

x
xf

fδ

ε

Now, the nominal system can be exactly represented using 
four rules, with the same weights and matrices as given in 
[3] in the reduction with respect to )1,2(A , and due to space 
limitation we avoid repeating them here. In this example, the 
perturbation term originates only from the modeling error 
and it can be easily shown that it satisfies (4) with 5.0=fγ ,

and 0=gβ . Solving the LMIs (16)-(18) for this system, we 

obtain the PDC feedback gains: 
]5.24,7.163,7.150[],4.28,4.145,8.133[ 21 −−=−−= FF

]9.109,3.653,8.603[],7.92,2.490,6.451[ 43 −−=−−= FF
Fig. 3 shows the simulation results obtained when we apply 
the designed PDC to the original nonlinear system.  

Since the modeling is valid locally, the stability analysis is 
also valid locally and we can not say any statements about 
global stability. 

V. CONCLUSION

In this paper, we proposed a fuzzy-model-based approach 
for exponentially stabilizing perturbed nonlinear systems. 
We also considered the modeling error and presented it 
uniformly as system perturbations. We showed the 
possibility of this presentation for affine nonlinear systems, 
and finally, we provide the design constraints in the form of 
LMIs. We should also notify here that the approach 
described in this paper was independent of the method used 
to find the TS fuzzy approximation. So, it can be potentially 
used for other methods which were not considered in this 
paper or will be developed later.   
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Fig. 2.  Angle and angular velocity of the pendulum, starting from 
different initial angles and zero angular velocity 
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Fig. 3.  State variables of the closed loop system of example B. 
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